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The localisation of energy in general relativity?' 

F I Cooperstock and R S Sarracino 
Department of Physics, University of Victoria, Victoria, BC, Canada V8W 2Y2 

Received 27 September 1977 

Abstract. The logic of gravitational field energy localisation for static or quasi-static fields 
is discussed. A particular form of localisation in the case of spherical symmetry is justified 
by physical considerations. This form coincides with that general form presented by Mdller 
for the case of the Schwarzschild constant-matter-density fluid but differs when one 
considers other equations of state. 

1. Introduction 

Even in the absence of gravitational fields, the localisation of field energy is to a 
certain extent indefinite (Feynman et a1 1964). With the inclusion of gravitational field 
energy in general relativity, the indefiniteness is often compounded by confusion, 
partly because of the role of the equivalence principle. Since the effect of a gravita- 
tional field can be annihilated locally by free-fall (equivalence principle) the role of 
gravitational field energy is often ignored as a matter of principle, or because of the 
relative weakness of gravitational binding which prevails in most physical situations, 
oi by some curiously fuzzy combination of both. 

Through the years, there have been various attempts to develop a truly invariant 
general prescription for gravitational field energy localisation. However, the ambigui- 
ties inherent in the choice of gravitational energy flux vector in the case of radiative 
fields would appear to preclude the possibility of success for such a programme. For 
static (or quasi-static) fields in general, or spherically symmetric fields even with time 
dependence, there is more to be said about physically meaningful concepts and their 
interpretation. This is the principal focus of the present work, with primary emphasis 
on the particularly tractable cases which emerge when one is dealing with spherical 
symmetry. 

2. Spherically symmetric fields 

The spherically symmetric gravitational field is described, in Schwarzschild coor- 
dinates, by the metric form (Landau and Lifshitz 1975) 

ds2 = ey  dt2 - eA dr2 - r2(d02 +sin2 0 d4'). (1) 
In vacuum, the components of the metric tensor at r are simply related to the total 
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mass m which produces the field: 

Within the matter distribution, one of the field equations for A is 

87rToo = -e-A(-p-;) 1 A ’  +T. 1 
r 

To avoid a singularity at the origin, A must vanish at least like r2 as r approaches zero 
and hence the solution of equation (3) is 

8TJ r  o r 2  

-A e = 1-- To r dr‘. 
r o  

(4) 

If the body has a radius a, then the matching of the interior and exterior metrics 
implies that 

m = 47r [ Toor’’ dr’ 

which is precisely the familiar formula of Newtonian theory. However, the integration 
in equation ( 5 )  is with respect to coordinate volume, 47rr’dr rather than proper 
volume 47rr e 2 A / 2  dr. The discrepancy between the energy of the matter 

m* = 47r [ Toor’’ e*/’ dr’ 

and the total energy, m, is accounted for by gravitational binding energy. 

identification of 
These considerations led us (Cooperstock and Sarracino 1976, 1977) to an 

(7)  0 -A/2 ep= To e 

as the proper total energy density in terms of Schwarzschild coordinates, because it is 
precisely the integration of cp over proper volume which, through equation ( 5 ) ,  yields 
the total energy m. Moreover, the equation of state 

E,, = constant (8) 
was proposed as a replacement for the Schwarzschild equation of state 

T~~ = constant (9) 
to represent the limiting configuration of compact spherically symmetric matter dis- 
tributions consistent with general relativity. This replacement has a direct bearing on 
the maximum gravitational red shift from the surface of a star and the upper limit to 
the mass of non-rotating neutron stars. 

One might question the logic of a localisation of energy which includes gravita- 
tional energy and, granting the logic, the choice of the form for localisation is not 
entirely obvious. The common critique of localisation per se stems from the principle 
of equivalence which affords a free-fall observer the luxury of abolishing the effects of 
gravitation in his local domain. However, the question of the existence or lack of 
existence of the gravitational field can be answered in an absolute manner through 
considerations of the Riemann tensor. In spite of the utility of the equivalence 
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principle, particularly in guiding Einstein to Riemannian geometry, it has had the 
unfortunate influence on many investigators to relegate gravitational energy to some 
nebulous, ephemeral status and then to discard it entirely with free-fall. For the many 
physical situations where the effect of gravitation is truly negligible, there is no net 
detrimental effect in this reasoning. However, in the interesting situations where 
bodies are reaching the limits of compressibility at radii close to 2m, the role of 
gravitation assumes vital proportions. For example, :he equations of state, equations 
(8) and (9), lead to maximum gravitational red shifts from the syrface of the body of 
2.48 and 2.00 respectively. Gravitational energy exists in an absolute sense. If it is 
taken into account in the tallying of energy, it can make a considerable difference. 

If one moves relative to a body, the perception of its energy content is necessarily 
altered with respect to the rest energy. One cannot demand complete invariance of the 
localisation of energy density, within or without the realm of general relativity. 
Therefore, the argument via the equivalence principle, that free-fall locally removes 
the effect of a gravitational field is a basis for denying gravitational field energy a local 
role, is necessarily specious. The logical question is simply this: can one ascribe and 
justify a physically meaningful localisation of total energy density relative to the rest 
frame of a body? 

Misner and Sharp (1964) and Misner (1965) have, in a sense, justified the energy 
localisation of equation (7) by dynamical considerations. From equation (7), the total 
energy in the spherically symmetric matter distribution up to a radius r is 

m(r)= 47r [ '  Toor'* dr'. 
Jo 

They have shown that the rate at which work is done by the external matter on the 
matter within the radius r is precisely the time rate of change of the energy function 
given by equation (10). 

In fact this localisation can be justified without regard to dynamical considerations. 
Consider a matter distribution which consists of an interior core of radius r, a vacuum 
region VI bounded by a spherical shell of outer radius a and inner radius b followed 
by the exterior vacuum VE of infinite extent. As before, the metric in VE is the 
Schwarzschild solution given by equations (l), (2) and (5). 

Within the region VI, the outer mass shell which is now an exterior shell, has no 
influence on the metric. Indeed, in the absence of the interior core, the region VI 
becomes Minkowski space, as to be expected from the correspondence with 
Newtonian theory. The metric in VI derives entirely from the interior core and hence 
it is again the Schwarzschild metric of equations (1) and (2) where now equation (4) is 
to be used for the metric components, appropriate to the contributing mass which now 
extends only to radius r. Thus it is entirely logical to ascribe a localisation of energy, 
matter plus gravitational, within r as in equation (lo), 

* I  

m(r) = 47r Jo' TOorf2 dr' 

because all physical phenomena at r are governed by the energy of equation (10). 
Allowing VI to shrink with b approaching r leads to the same conclusion for the 
continuum. A test particle moving in VI, will assume the familiar geodesic trajectories 
with m given by equation (lo),  where the upper limit of integration extends to the 
radius of the inner core. 
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The energy concept is a useful physical concept when it is described in terms of 
physical constructs. Geodesic motion of a test particle which is governed by m(r) fits 
into this category. Proper volume 47rr e dr, rather than coordinate volume 4 m Z  dr, 
also fits into this category, and this in turn justifies the energy localisation of Too 
which, through integration over proper volume, yields the observable m (r). 

general spherically symmetric metric, 

2 A / 2  

The form for eP, expressed in Schwarzschild coordinates, can be generalised. For a 

ds2 = e” dt2-eA dr2-  R 2  dR2 (11) 

where v, A, and R are functions of r and t. It can also be shown (Thompson and 
Whitrow 1967, Cahill and McVittie 1970) that 

m’=47rR2(TooR’- TloR) (12) 

m(r, f )=$R( l  +e-”k2-e-AR’2) (13) 

with the mass function, generalised to include cases with time dependence, as 

where a prime and a dot denote differentiation with respect to r and t respectively. If 
we restrict the coordinates to be co-moving, there is no momentum flux and TIo  
vanishes. Then, from equation (12), we can write 

m(r, t ) =  47rR2TooR’dr Ib 
2 A/2 and since the proper volume element is 47rR e 

is 
dr, the generalised expression for E ,  

ep = T ~ O R ’  e-A/2. (15) 

It is perhaps worthy of remark that for a fluid referred to its rest frame, 

(16) 0 To = E .  

Since E is a four-scalar, there is perhaps a natural psychological tendency to wish to 
reject ep (equation (7)) as the important physical quantity. However, this is a mistake. 
Although E is a four-scalar, Too is not a four-scalar. The two quantities simply happen 
to be equal when the fluid is referred to its rest frame. The quantity which investiga- 
tors have really meant to examine, namely Too in equations (3), (4), (5) etc, has been 
replaced by E and granted a higher level of physical significance. 

To emphasise the error, consider the situation when the fluid sphere is endowed 
with a spherically symmetric distribution of charge. Equation (1) still describes the 
metric and equation (3) is one of the field equations whose solution is given by 
equation (4) as before. However, there is no longer a vacuum region because of the 
existence of a radial electric field. The solution for A and v exterior to the matter 
distribution is now the Reissner-Nordstrom metric 
1918a) with total charge q :  

e’ = e-A = 1 --+7 2m q2  
r 

which replaces equation (2). Because of the presence 

(Reissner 19 16, Nordstrom 

(17) 

of the electric field, the Too 
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component of the energy-momentum tensor is no longer E but rather 

E2 T$=e+- 
8.rr 

where 

1 '  4 (r) E(r)  = 7 I p 47d2 eA'2 dr' = 7 
r o  r 

is the electric field at radius r, p is the charge density and q(r) is the amount of charge 
within the sphere of radius r. Clearly Too in this case is no longer a four-scalar. The 
physical significance of Too is in its proper perspective in this example. (Energy 
considerations for charged fluids will be discussed in greater detail in another paper 
(Cooperstock and de la Cruz 1978).) 

Another way of looking at the problem is through the eigenvalue equation for the 
energy-momentum tensor, 

T j j ~ '  = kuj (20) 

where ui is the four-velocity and k ,  a scalar, is the eigenvalue. By contracting both 
sides of equation (20) with u i ,  we isolate the eigenvalue 

k = T,juiu'. (21) 

For a perfect fluid 

which, in conjunction with equation (21), yields the eigenvalue k = E .  It is also the 
value of Too when this component is evaluated in the co-moving frame, i.e., Too = E ,  
when u i  = Soi. 

In the case with charge however, the eigenvalue is 

where Rk is the Maxwell tensor. As before, it is also the value of Too when this 
component is evaluated in the co-moving frame, and this now assumes the form as 
given in equation (18). In general, for an arbitrary frame, the true scalar k ,  could be 
found from the form given in equation (23) but not from the form given in equation 
(19). While it is true that Too, evaluated in the co-moving frame u i  = Soi ,  yields the 
eigenvalue k which is a scalar, the quantity Too itself is not a scalar. 

3. The search for a general form 

Having achieved and justified a localisation of energy in the case of spherical sym- 
metry, it is natural to seek a form which is applicable in the absence of spherical 
symmetry. The work of Nordstrom (1918b), Tolman (1930) and Mdller (1972) 
appears to offer some hope in this regard. The approach is to express fhe total energy 
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as an integral over all space of the matter tensor plus energy-momentum pseudo- 
tensor: 

W 

M =  [ [ (Too+too)(-g)’ /2  dx dy dz. 
J J J  
-02 

By the use of Gauss’s theorem and the imposition of the condition that the system be 
quasistatic, this integral is transformed into one which extends only over the matter 
distribution: 

A simpler derivation which circumvents the pseudotensor is provided by Landau and 
Lifshitz (1975).  This proceeds from the form of the Roo component of the Ricci tensor 
for a time-independent metric, Gauss’s theorem, the asymptotic form of the metric 
and the Einstein field equations. 

Applied to a perfect fluid sphere, equation (25 )  can be expressed as 

m = I[( ( E  + 3 ~ ) ( - g ) ’ / ~  dx dy dz (26 )  

where E is the fluid energy density. This form led Whittaker (1968) to seek and find 
the solution for what he termed a body with ‘constant gravitational mass density’, 

E + 3p = constant. (27 )  

Although the Whittaker solution was nicely derived and analysed, the identification of 
~ + 3 p  with ‘gravitational mass density’, or proper total energy density in our 
terminology, would be within the realm of justification if (-g)l/’ dx dy dz were the 
element of proper three-volume rather than the true value ( (3 )g ) ’ /2  dx dy dz. Indeed 
Mdller (1972) has performed the division of equation (25)  as 

and has identified 

E M  (Too - Ti’ - T2’ - T33)(goo)’/2 (29)  
(or ( E  + 3 ~ ) ( g ~ ~ ) ~ / *  in the case of fluids with spherical symmetry) as the ‘density of 
gravitational mass’. Moreover, Mdller made the interesting observation that ‘since g M  

obviously behaves like a scalar for all purely spatial transformations this interpretation 
has a well defined physical meaning’. The two characteristics of eM for static and 
quasistatic situations, that it is general and not confined to systems with spherical 
symmetry, and that it is endowed with a manifestly scalar character under spatial 
transformations (as mentioned earlier, the largest extent of invariance which one 
could hope for), make it a prime candidate for the generalisation which is being 
sought. Moreover, it is even suggestive that applied to spherical symmetry, cM would 
coincide with cp. Indeed, MBller shows that for the interior Schwarzschild solution, 
generated by the equation of state (equation (9)),  this is the case. 

However, this is an accidental occurrence, peculiar to the Schwarzschild fluid. The 
authors have examined the Whittaker metric, some Tolman metrics (Tolman 1939) 
and their own metric generated by the equation of state (equation (8)). Although the 
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total energy for these bodies, whether one performs the computation with ep or EM, is 
necessarily unique, in no case was there the same localisation of energy as in the 
Schwarzschild fluid. Thus, one is forced, albeit reluctantly, to reject the EM form of 
localisation. There are good physical grounds for accepting the ep localisation in the 
case of spherical symmetry and since eM does not reduce to ep when particularised to 
spherical symmetry, it is unacceptable. 

It would be very interesting to find the correct generalisation of ep to the case 
where one does not have spherical symmetry. If the energy localisation is meaningful 
in spherically symmetric configurations, it is surely meaningful in non-spherically 
symmetric configurations which are static or quasistatic, and hence do not present the 
energy ambiguities inherent in systems with gravitational radiation. 

Finally, it should be noted that when one is dealing with radiative fields, it is useful 
to employ one or another form of gravitational energy-momentum pseudotensor, 
whose integrated values have well defined meaning. However, one would be hard 
pressed to choose one pseudotensor over another, except possibly with regard to 
considerations of angular momentum (Landau and Lifshitz 1975). Similarly, one 
could attempt to choose some particular pseudotensor to ascribe a gravitational field 
energy density localisation. In general, this would imply a variation in energy content 
through vacuum regions. However, this would be in conflict with the energy content 
which one would wish to ascribe from a consideration of m which is perceived by a test 
particle. For example in VI of 0 2, the motion a test particle is governed by the same m 
at every point. From the point of view of physical perception, it would appear most 
logical and useful to ascribe a localisation within the body as previously discussed. 
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